skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fiedler, Jacob B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. LetE \subseteq \mathbb{R}^{n}be a union of line segments andF \subseteq \mathbb{R}^{n}the set obtained fromEby extending each line segment inEto a full line. Keleti’sline segment extension conjectureposits that the Hausdorff dimension ofFshould equal that ofE. Working in\mathbb{R}^{2}, we use effective methods to prove a strong packing dimension variant of this conjecture. Furthermore, a key inequality in this proof readily entails the planar case of the generalized Kakeya conjecture for packing dimension. This is followed by several doubling estimates in higher dimensions and connections to related problems. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026